252 research outputs found

    Fuzzy Bigraphs: An Exercise in Fuzzy Communicating Agents

    Full text link
    Bigraphs and their algebra is a model of concurrency. Fuzzy bigraphs are a generalization of birgraphs intended to be a model of concurrency that incorporates vagueness. More specifically, this model assumes that agents are similar, communication is not perfect, and, in general, everything is or happens to some degree.Comment: 11 pages, 3 figure

    Causal Fermion Systems: A Quantum Space-Time Emerging from an Action Principle

    Get PDF
    Causal fermion systems are introduced as a general mathematical framework for formulating relativistic quantum theory. By specializing, we recover earlier notions like fermion systems in discrete space-time, the fermionic projector and causal variational principles. We review how an effect of spontaneous structure formation gives rise to a topology and a causal structure in space-time. Moreover, we outline how to construct a spin connection and curvature, leading to a proposal for a "quantum geometry" in the Lorentzian setting. We review recent numerical and analytical results on the support of minimizers of causal variational principles which reveal a "quantization effect" resulting in a discreteness of space-time. A brief survey is given on the correspondence to quantum field theory and gauge theories.Comment: 23 pages, LaTeX, 2 figures, footnote added on page

    Generalized Satisfiability Problems via Operator Assignments

    Full text link
    Schaefer introduced a framework for generalized satisfiability problems on the Boolean domain and characterized the computational complexity of such problems. We investigate an algebraization of Schaefer's framework in which the Fourier transform is used to represent constraints by multilinear polynomials in a unique way. The polynomial representation of constraints gives rise to a relaxation of the notion of satisfiability in which the values to variables are linear operators on some Hilbert space. For the case of constraints given by a system of linear equations over the two-element field, this relaxation has received considerable attention in the foundations of quantum mechanics, where such constructions as the Mermin-Peres magic square show that there are systems that have no solutions in the Boolean domain, but have solutions via operator assignments on some finite-dimensional Hilbert space. We obtain a complete characterization of the classes of Boolean relations for which there is a gap between satisfiability in the Boolean domain and the relaxation of satisfiability via operator assignments. To establish our main result, we adapt the notion of primitive-positive definability (pp-definability) to our setting, a notion that has been used extensively in the study of constraint satisfaction problems. Here, we show that pp-definability gives rise to gadget reductions that preserve satisfiability gaps. We also present several additional applications of this method. In particular and perhaps surprisingly, we show that the relaxed notion of pp-definability in which the quantified variables are allowed to range over operator assignments gives no additional expressive power in defining Boolean relations

    The Category of Node-and-Choice Forms, with Subcategories for Choice-Sequence Forms and Choice-Set Forms

    Full text link
    The literature specifies extensive-form games in many styles, and eventually I hope to formally translate games across those styles. Toward that end, this paper defines NCF\mathbf{NCF}, the category of node-and-choice forms. The category's objects are extensive forms in essentially any style, and the category's isomorphisms are made to accord with the literature's small handful of ad hoc style equivalences. Further, this paper develops two full subcategories: CsqF\mathbf{CsqF} for forms whose nodes are choice-sequences, and CsetF\mathbf{CsetF} for forms whose nodes are choice-sets. I show that NCF\mathbf{NCF} is "isomorphically enclosed" in CsqF\mathbf{CsqF} in the sense that each NCF\mathbf{NCF} form is isomorphic to a CsqF\mathbf{CsqF} form. Similarly, I show that CsqFa~\mathbf{CsqF_{\tilde a}} is isomorphically enclosed in CsetF\mathbf{CsetF} in the sense that each CsqF\mathbf{CsqF} form with no-absentmindedness is isomorphic to a CsetF\mathbf{CsetF} form. The converses are found to be almost immediate, and the resulting equivalences unify and simplify two ad hoc style equivalences in Kline and Luckraz 2016 and Streufert 2019. Aside from the larger agenda, this paper already makes three practical contributions. Style equivalences are made easier to derive by [1] a natural concept of isomorphic invariance and [2] the composability of isomorphic enclosures. In addition, [3] some new consequences of equivalence are systematically deduced.Comment: 43 pages, 9 figure

    On Unbounded Composition Operators in L2L^2-Spaces

    Full text link
    Fundamental properties of unbounded composition operators in L2L^2-spaces are studied. Characterizations of normal and quasinormal composition operators are provided. Formally normal composition operators are shown to be normal. Composition operators generating Stieltjes moment sequences are completely characterized. The unbounded counterparts of the celebrated Lambert's characterizations of subnormality of bounded composition operators are shown to be false. Various illustrative examples are supplied

    Parameter-Independent Strategies for pMDPs via POMDPs

    Full text link
    Markov Decision Processes (MDPs) are a popular class of models suitable for solving control decision problems in probabilistic reactive systems. We consider parametric MDPs (pMDPs) that include parameters in some of the transition probabilities to account for stochastic uncertainties of the environment such as noise or input disturbances. We study pMDPs with reachability objectives where the parameter values are unknown and impossible to measure directly during execution, but there is a probability distribution known over the parameter values. We study for the first time computing parameter-independent strategies that are expectation optimal, i.e., optimize the expected reachability probability under the probability distribution over the parameters. We present an encoding of our problem to partially observable MDPs (POMDPs), i.e., a reduction of our problem to computing optimal strategies in POMDPs. We evaluate our method experimentally on several benchmarks: a motivating (repeated) learner model; a series of benchmarks of varying configurations of a robot moving on a grid; and a consensus protocol.Comment: Extended version of a QEST 2018 pape

    Functor of continuation in Hilbert cube and Hilbert space

    Get PDF
    A ZZ-set in a metric space XX is a closed subset KK of XX such that each map of the Hilbert cube QQ into XX can uniformly be approximated by maps of QQ into X∖KX \setminus K. The aim of the paper is to show that there exists a functor of extension of maps between ZZ-sets of QQ [or l2l_2] to maps acting on the whole space QQ [resp. l2l_2]. Special properties of the functor are proved.Comment: 9 page

    Measuring processes and the Heisenberg picture

    Full text link
    In this paper, we attempt to establish quantum measurement theory in the Heisenberg picture. First, we review foundations of quantum measurement theory, that is usually based on the Schr\"{o}dinger picture. The concept of instrument is introduced there. Next, we define the concept of system of measurement correlations and that of measuring process. The former is the exact counterpart of instrument in the (generalized) Heisenberg picture. In quantum mechanical systems, we then show a one-to-one correspondence between systems of measurement correlations and measuring processes up to complete equivalence. This is nothing but a unitary dilation theorem of systems of measurement correlations. Furthermore, from the viewpoint of the statistical approach to quantum measurement theory, we focus on the extendability of instruments to systems of measurement correlations. It is shown that all completely positive (CP) instruments are extended into systems of measurement correlations. Lastly, we study the approximate realizability of CP instruments by measuring processes within arbitrarily given error limits.Comment: v

    de Branges-Rovnyak spaces: basics and theory

    Full text link
    For SS a contractive analytic operator-valued function on the unit disk D{\mathbb D}, de Branges and Rovnyak associate a Hilbert space of analytic functions H(S){\mathcal H}(S) and related extension space D(S){\mathcal D(S)} consisting of pairs of analytic functions on the unit disk D{\mathbb D}. This survey describes three equivalent formulations (the original geometric de Branges-Rovnyak definition, the Toeplitz operator characterization, and the characterization as a reproducing kernel Hilbert space) of the de Branges-Rovnyak space H(S){\mathcal H}(S), as well as its role as the underlying Hilbert space for the modeling of completely non-isometric Hilbert-space contraction operators. Also examined is the extension of these ideas to handle the modeling of the more general class of completely nonunitary contraction operators, where the more general two-component de Branges-Rovnyak model space D(S){\mathcal D}(S) and associated overlapping spaces play key roles. Connections with other function theory problems and applications are also discussed. More recent applications to a variety of subsequent applications are given in a companion survey article
    • …
    corecore